View Feed
group-icon
Coffee Room
Discuss anything here - everything that you wish to discuss with fellow engineers.
12940 Members
Join this group to post and comment.

Transition and Diffusion capacitance in P-N junction diode

Transition and Diffusion capacitance

Transition capacitances:

1. When P-N junction is reverse biased the depletion region act as an insulator or as a dielectric medium and the p-type an N-type region have low resistance and act as the plates.

2. Thus this P-N junction can be considered as a parallel plate capacitor.

3. This junction capacitance is called as space charge capacitance or transition capacitance and is denoted as CT .

4. Since reverse bias causes the majority charge carriers to move away from the junction , so the thickness of the depletion region denoted as W increases with the increase in reverse bias voltage.

5. This incremental capacitance CT may be defined as

CT = dQ/dV,

Where dQ is the increase in charge and dV is the change or increase in voltage.

6. The depletion region increases with the increase in reverse bias potential the resulting transition capacitance decreases.

7. The formula for transition capacitance is given as CT = Aε/W, where A is the cross sectional area of the region, and W is the width.

Diffusion capacitance:

1. When the junction is forward biased, a capacitance comes into play , that is known as diffusion capacitance denoted as CD. It is much greater than the transition capacitance.

2. During forward biased the potential barrier is reduced. The charge carriers moves away from the junction and recombine.

3. The density of the charge carriers is high near the junction and reduces or decays as the distance increases.

4. Thus in this case charge is stored on both side of the junction and varies with the applied potential. So as per definition change in charge with respect to applied voltage results in capacitance which here is called as diffusion capacitance.

5. The formula for diffusion capacitance is CD = τID / ηVT , where τ is the mean life time of the charge carrier, ID is the diode current and VT is the applied forward voltage, and η is generation recombination factor.

6. The diffusion capacitance is directly proportional to the diode current.

7. In forward biased CD >> CT . And thus CT can be neglected.
Thank you, that was awesome!
Ankita Katdare
Ankita Katdare • Sep 8, 2015
@Prajakta Kelapure It's great to know that the students are finding this so useful and informative. You should start writing tutorials again. 👍
Akash Sharma
Akash Sharma • Oct 18, 2016
This is good.very useful .
Jafer hameed
Jafer hameed • Sep 21, 2017
Great step forward
Like to know how can I post questions

It's too good .l learned a lot from this

Prasanth Prince
Prasanth Prince • Nov 23, 2018

In diffusion capacitance 2nd point there is a mistake move away from

Prasanth Prince
Prasanth Prince • Nov 23, 2018

It is towards the junction

Share this content on your social channels -