CrazyEngineers
Howdy guest!
Dear guest, you must be logged-in to participate on CrazyEngineers. We would love to have you as a member of our community. Consider creating an account or login.
Replies
  • Ashutosh_shukla

    MemberDec 27, 2008

    Hey if you want the mathematics method that we had in course then refer to any textbook with a chapter on matrices.But for coding part if you are

    😕 then

    Check this thing out
    Inverse = Adjoint divided by the determinant of matrix

    Now how to find the adjoint again if you are 😕 then

    Adjoint = Transpose of the matrix of cofactors.

    Now how to find the cofactors again if you are 😕 then

    cofactor of element is minor of the element multiplied by (-1) raised to (i+j)

    Now how to find the minor again if you are 😕 then

    minor is the value of the determinant formed by skipping the ith row and jth column then taking remaining rows and columns.

    I guess i have clarified it enough.
    The hard task is to find the determinant in generalized manner.
    You have two loops one inside the another and then again two loops inside them to find the determinant of remaining rows and columns.Can you do this??????????????I have a big doubt Try it out even if you get the code working then also it would be of the complexity n^4 which is not advisable I think i posted quite a big suggestion sorry for that but i am really 😁
    Are you sure? This action cannot be undone.
    Cancel
  • tveswaran

    MemberDec 30, 2008

    thanx dude.... but i know the method wat u tld above... but i need to know how the inverse come for given matrix.......
    i already tried ur method....but its not give the solution.......
    Are you sure? This action cannot be undone.
    Cancel
  • Ashutosh_shukla

    MemberDec 31, 2008

    I forgot to specify that this method works only for the matrices with non zero determinant
    see if your input satisfies this criteria
    Are you sure? This action cannot be undone.
    Cancel
  • pradeep_agrawal

    MemberJan 2, 2009

    Below is my sample code to determine inverse of a matrix of order n.

      #include "stdio.h"
      
      #define MAX_MATRIX_ORDER 10
      
      void print_matrix(int matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER], int order) {
        int i = 0, j = 0;
        for(i = 0; i < order; i++) {
          for(j = 0; j < order; j++) {
            printf("%d ", matrix[i][j]);
          }
          printf("\n");
        }
      }
      
      long calculate_determinant(int matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER], int order) {
        int submatrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER] = { 0 };
        int determinant = 0;
        int sign = 1;
        int i = 0, j = 0, k = 0;
      
        if(order == 1) {
          determinant = matrix[0][0];
        } else {
          for(i = 0; i < order; i++) {
            for(j = 0; j < (order - 1); j++) {
              for(k = 0; k < (order - 1); k++) {
                if(k < i) {
                  submatrix[j][k] = matrix[j + 1][k];
                } else {
                  submatrix[j][k] = matrix[j + 1][k + 1];
                }
              }
            }
            determinant += sign*matrix[0][i]*calculate_determinant(submatrix, order -1);
            sign = -sign;
          }
        }
      
        return determinant;
      }
      
      void determine_cofactor_matrix(int matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER], int cofactor_matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER], int order) {
        int submatrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER] = { 0 };
        int sign_x = 1, sign_y = 1;
        int index_x = 0, index_y = 0;
        int i = 0, j = 0, k = 0, l = 0;
      
        if(order == 1) {
          cofactor_matrix[0][0] = matrix[0][0];
        } else {
          for(i = 0; i < order; i++) {
            for(j = 0; j < order; j++) {
              index_x = 0;
              index_y = 0;
              for(k = 0; k < order; k++) {
                if(k != i) {
                  for(l = 0; l < order; l++) {
                    if(l != j) {
                      submatrix[index_x][index_y] = matrix[k][l];
                      index_y++;
                    }
                  }
                  index_x++;
                  index_y = 0;
                }
              }
              cofactor_matrix[i][j] = sign_x*sign_y*calculate_determinant(submatrix, order -1);
              sign_y = -sign_y;
            }
            sign_x = -sign_x;
            sign_y = 1;
          }
        }
      }
      
      void determine_transpose_matrix(int matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER], int order) {
        int i = 0, j = 0, temp = 0;
        for(i = 0; i < order; i++) {
          for(j = 0; j <= i; j++) {
            temp = matrix[i][j];
            matrix[i][j] = matrix[j][i];
            matrix[j][i] = temp;
          }
        }
      }
      
      int main() {
        int matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER] = { 0 };
        int order = 0;
        long determinant = 0;
        int inverse_matrix[MAX_MATRIX_ORDER][MAX_MATRIX_ORDER] = { 0 };
        int i = 0, j = 0;
      
        scanf("%d", &order);
        if(order > MAX_MATRIX_ORDER) {
          printf("Matrix order too high\n");
          return 0;
        } else if(order < 1) {
          printf("Invalid matrix order\n");
          return 0;
        }
      
        for(i = 0; i < order; i++) {
          for(j = 0; j < order; j++) {
            scanf("%d", &matrix[i][j]);
          }
        }
      
        determinant = calculate_determinant(matrix, order);
        printf("Matrix:\n");
        print_matrix(matrix, order);
        if(determinant == 0) {
          printf("Determinant of matrix is ), inverse can't be find.");
        } else {
          determine_cofactor_matrix(matrix, inverse_matrix, order);
          determine_transpose_matrix(inverse_matrix, order);
        }
        printf("Inverse matrix: [A]*(1/%d)\n[A] =\n", determinant);
        print_matrix(inverse_matrix, order);
      
        return 0;
      }
    
    Compile the file with above code and run as:
    a.exe < input.txt > output.txt [on windows]
    a.out < input.txt > output.txt [on linux]

    Here,
    a.exe or a.out are the executables generated after compilation

    input.txt is the file containing input, e.g., if the matrix of order 3 is:
    1 2 3
    0 4 5
    1 0 6
    Then input.txt will be
    3
    1 2 3
    0 4 5
    1 0 6

    output.txt is the output file containing result, for given example output.txt will contain
    Matrix:
    1 2 3
    0 4 5
    1 0 6
    Inverse matrix: [A]*(1/22)
    [A] =
    24 -12 -2
    5 3 -5
    -4 2 4

    Please let me know if any clarification on the code is required.

    -Pradeep
    Are you sure? This action cannot be undone.
    Cancel
  • Ashutosh_shukla

    MemberJan 2, 2009

    Awesome code Pradeep keep it up but i guess has he got his solution i dont know but your code is good i must say
    Are you sure? This action cannot be undone.
    Cancel
  • Kaustubh Katdare

    AdministratorJan 2, 2009

    Indeed 😀 Pradeep is one of the CS experts on CE. We are proud to have him on CE.
    Are you sure? This action cannot be undone.
    Cancel
Home Channels Search Login Register