Design and analysis of Rocket Nozzle

DESIGN AND ANALYSIS OF SPACE SHUTTLE NOZZLE



ABSTRACT: The function of a rocket nozzle is to channelise and accelerate the combustion products produced by the burning propellant, inside a rocket motor, in such as way so as to maximize the velocity of the exhaust at the exit, to supersonic velocity. The nozzle converts the chemical energy of the propellant into kinetic energy with no moving parts. It is basically a tube with variable cross-sectional area.

Nozzles are generally used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the exhaust stream that emerges from them. The nozzle is used to convert the chemical-thermal energy generated in the combustion chamber into kinetic energy. The nozzle converts the low velocity, high pressure, high temperature gas in the combustion chamber into high velocity gas of lower pressure and temperature, thus producing the required thrust for the rocket to propel.

The convergent and divergent type of nozzle is known as DE-LAVAL nozzle. Throat is the portion with minimum area in a convergent-divergent nozzle. The divergent part of the nozzle is known as nozzle exit. In the convergent section the pressure of the exhaust gases will increase and as the hot gases expand through the diverging section attaining high velocities from continuity equation.

The analysis of a rocket nozzle involves the concept of "steady, one-dimensional compressible fluid flow of an ideal gas". The goal of rocket nozzle design is to accelerate the combustion products to as high an exit velocity as possible. This is achieved by designing the necessary nozzle geometric profile with the condition that isentropic flow is to be aimed for. Isentropic flow is considered to be flow that is dependant only upon cross-sectional area -- which necessitates frictionless and adiabatic (no heat loss) flow. Therefore, in the actual nozzle, it is necessary to minimize frictional effects, flow disturbances and conditions that can lead to shock losses. In addition, heat transfer losses are to be minimized. In this way, the properties of the flow are near isentropic, and are simply affected only by the changing cross-sectional area as the fluid moves through the nozzle.

Space shuttle uses some of the largest De-Laval nozzles in the Solid Rocket Boosters(SRBs). They are designed so as to optimize the weight and the performance. In this project a study is conducted to study the various configurations and geometries of a De-laval nozzle w.r.t the available technologies been used in the world. Further an effort is made to analyse the flow of gases through a Space shuttle nozzle using commercially available software.

Replies

  • Mechie Projects
    Mechie Projects
    Finite element Analysis of a Nozzle Flow
    nozzle
  • Mechie Projects
    Mechie Projects
    What is the efficiency of a simple C-D nozzle & an equivalent bell nozzle, taking into account the surface roughness, manufacturing limitations etc?
  • Mechie Projects
    Mechie Projects
    Why are Solid Rockets better than Liquid Propelled Rockets?

You are reading an archived discussion.

Related Posts

I'm very much interested to learn hfss and do antenna simulations. anyone please help me
Hi all , I am inviting ideas and opportunities on development of organic solar cell(PV Cells) production/research /design in Indian subcontinent for cheap availability of power in rural india. All...
BMW is a part of Make in India program, and has launched its brand new luxury 7 series limousine at the 13th Auto Expo. Brand Ambassador of BMW, ace cricket...
In a very swift move, the US tech giant Microsoft has announced the acquisition of the firm SwiftKey known for its advanced, AI-powered smart prediction technology that makes typing easier....
Anybody please help me to understand the process details of forming Shearing Force Diagram and Bending Moment Diagram on supported beams.